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Abstract. When the reactant surface is not in a thermal equilibrium, but in a thermo-coherent state we 
have derived the rate and discussed about the quantum features of the rate. In the limit of very low and 
very high temperature the expressions are derived analytically and compared with the case of thermal distri-
bution. We have investigated the dependence of temperature on the rate due to displacement, distortion of 
the harmonic potential energy surfaces of the reactant and product manifold. 
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1. Introduction 

The study of non-radiative processes in solids has 
provided a theoretical basis for understanding the 
electron transfer processes1–25 in condensed phases. 
For non-adiabatic interstate coupling between harmo-
nic surfaces, Huang and Rhys,1 Kubo2 and jointly by 
Kubo and Toyozawa3 had advanced the theory in the 
direction to understand the multiphoton processes in 
semiconductor.4 Marcus in 1956 from a reaction co-
ordinate analysis gave a quantitative estimate of the 
rate of the outer sphere electron transfer in solution 
phase5,6 corresponding to the terms of the thermal 
average Franck–Condon (FC) factor.16,20–22 This 
classical high temperature limiting expression of the 
non-adiabatic ET rate corresponds to the continuous 
dielectric medium which is given by, 
 

 k = (2π/ )V2(4πkBTλ)–1/2exp[–(ΔG + λ)2/(4λkBT)], 

 (1) 
 

where V is the non-adiabatic coupling constant and 
λ is defined as the medium re-organization energy 
and ΔG is the free energy gap. Depending on the 
free energy change of the reaction with respect to 
medium re-organization energy factor λ, Marcus has 
classified the ET reactions into normal with,  
–ΔG < λ, activationless when –ΔG = λ and the in-
verted regime where –ΔG > λ, which still serves as 
the basic building block of the ET kinetics for donor–
acceptor system. 

 Quantum effects have been studied related to elec-
tronic coupling between the two surfaces,16 namely, 
one electron two-centered exchange problem,7–10 many 
electron direct exchange problem was considered by 
Katz et al11 and by Silbey et al12 along with a bridge 
mediated processes in refs 13–15. Another major 
change in the work of ET processes was appeared to 
understand the quantum effects16–19 where the high 
frequency intramolecular vibrational modes along 
with the low frequency medium modes have been 
included. 
 In electron transfer theory quantum effect can also 
be important when the molecular and solvent re-
organization are of quantum nature. Conditions for 
non-equilibrium reactant state are specially consid-
ered to account for the effect due to solvent dynam-
ics25 or for the ultrafast electron transfer processes.16 
Vibrational coherence in electron transfer has been 
studied through the dynamically created wave packet 
by a femto second pulse in the excited state charge 
transfer complex of an electron donor–acceptor sys-
tem between tetracyanoethylene and pyrene.26 Re-
cently we have derived the expression of electron 
transfer rate27,28 for the solvent mode and intramolecu-
lar mode to incorporate the quantum nature of the 
potential surfaces of the reactants and products. As a 
non-thermal reactant state distribution, Glauber–
Lachs state29,30 can be used which can be created in 
a harmonic oscillator mode in thermal equilibrium 
by a subsequent perturbation using an infra-red laser 
pulse.31 We have used the Franck–Condon factor23,24 
to elucidate a detailed behaviour of the rate due to 
all the parameters of the potential surfaces in pres-
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ence of initial thermo-coherent state29,30 and thereby 
the quantum nature of the electron transfer rate. 
 In §2 we have formulated the rate of quantum ele-
tron transfer processes for the reactant surface in 
thermo-coherent state instead of conventional thermal 
state. Franck–Condon factor is discussed for single 
mode and factorized two-mode displaced and dis-
torted potential surfaces of the reactant and product. 
Section 3 is devoted to the result and discussion 
about the effect of potential surfaces on the rate due 
to thermo-coherent state. The conclusions are pro-
vides in §4. 

2. On the quantum effect in electron transfer 

The quantum effects in electron transfer in the low 
temperature tunneling regime and moderate to high 
temperature classical regime for the single and the 
two-mode cases have been studied extensively.16 In 
these studies the usual assumption is that the reactant 
state is in thermal equilibrium. However, an initial 
non-equlibrium reactant state is also considered in 
some cases.16,25,26 Here we have calculated the quan-
tum rate due to thermo-coherent distribution of the 
reactant state in equilibrium. 
 For the single mode case the ET rate is given by 
the golden rule expression 
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where the reactant state is in thermal equilibrium 
with V is the coupling term between the reactant (a) 
and product (b) states. |〈θav|θbu〉 |2 is the Franck–
Condon factor between the reactant and product sur-
faces with v and u being the corresponding vibra-
tional quantum number. 
 For a two-mode model the reactant and product 
states are harmonic oscillators where the product 
state oscillators are displaced and distorted from the 
reactant state. Let ∑i Hg

i  and ∑i He
i be the Hamilto-

nian of the reactant and product states, respectively, 
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ix and ( )g e
ip are the co-ordinates and momenta, 

respectively of mode 0
ix  is the shift of the equilib-

rium displacement in the product state correspond-
ing to mode i. Here the dimensionless displacements 
are related to the real displacements, 0

ix  as 
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and distortion factor of the ith mode is  
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From the thermal average Golden rule expression for 
the two-mode case with frequencies ω g

1 and ω g
2 with 

dimensionless displacements z1 and z2 the rate is 
given by, 
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Here ω00 is the value of the 0–0 energy gap of the 
reactant and product surfaces. Considerable insight 
can be gained by assuming two classes of vibrational 
modes, a typical mode of the medium with frequency 
ωM and a representative of the high frequency in-
tramolecular modes with frequency ωc. Depending 
on the temperature of the reaction, the low frequency 
medium modes and high frequency intramolecular 
modes can be approximated nicely to give tangible 
analytical expressions for physical interpretation.16,24 

2.1 Quantum rate with Glauber–Lachs state 

Glauber–Lachs (GL)29–31 distribution of a harmonic 
oscillator interpolates between the Poissonian and 
thermal distributions. So it is sometimes called a 
thermo-coherent distribution.31 We consider the case 
when the reactant and product surfaces are harmonic 
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oscillators which are displaced and distorted. When 
the reactant state is in a thermo-coherent state the 
rate depends on the two parameters of the distribu-
tion, namely, the thermal-average excitation number 
and the coherent–average excitation number of the 
vibrational states. 
 In the Glauber–Lachs state [GL], the population 
distribution in the nth state is given by 
 

 1( ) exp ,
1 ( 1(1 )

n

GL nn
N S SP n L

N N NN +

⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟+ ++ ⎝ ⎠ ⎝ ⎠
 

 (6) 
 

where N and S are the thermal-average and coher-
ent-average excitation numbers of the states of the 
harmonic oscillator, respectively and 
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the Laguerre polynomial. The thermal average exci-
tation number of frequency ωg, N is given by 
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When the coherent-average excitation number S 
vanishes, the distribution becomes a thermal one, 
i.e. 
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When the thermal-average excitation number N van-
ishes, the distribution becomes Poissonian, i.e. 
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GL state can be obtained if an external Gaussian 
pulse of light excites a harmonic oscillator initially 
in a thermal distribution and then a thermalization 
takes place before considering the system as a can-
didate for electron transfer. 
 For the two-mode case the quantity of interest is 
the thermo-coherent average rate from the Fermi 
Golden rule expression 
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For the numerical evaluation of kGL for single and 
two-mode cases we have written the delta-function 
in the integral representation. We have also consid-
ered a damping rate, γ for the convergence of the in-
tegral whose magnitude does not affect the qualitative 
result through the numerical demonstration. For sin-
gle-mode displaced oscillator case some analytical 
results in the limit of very high and very low tem-
perature can be interesting for general understand-
ing. 
 For a single mode displaced oscillator model with 
displacement in co-ordinate, R0, with mass M and 
distortion parameter r = 0 i.e. frequency, ωg = ωe = ω0 
and with 0–0 energy gap, Eb – Ea = ω00, the rate is 
given by 
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Here the FC overlap factor is given by 
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where m can be negative or positive integer including 
zero. By applying a special case of bi-linear generat-
ing function in the form27 
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we find that 
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Now making use of the formula32 
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valid for |z| < 1 where Iν(z) denotes the modified 
Bessel function defined by 
 

 
2

0

( / 2)( ) ,
! ( 1)

k

k

zI x
k k

ν

ν ν

+∞

=

=
Γ + +∑  (16) 

 
we can simplify the integral in the following form: 
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To calculate the rate at very low temperature limit 
from (10) we have 
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where we have considered the limiting value of  
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The final expression of rate after simplifying the delta-
function is given by, 
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In the limit S tends to zero and p becomes zero, the 
rate is given by 
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This is precisely the nuclear tunneling rate16 for 
thermal distribution at zero temperature which is 
clarified by Jortner from the Huang–Rhys formula.1,16 
 To calculate the time-integral we assume short 
time approximation of (17) which is valid at moder-
ately high temperature limit. For S = 0, the steepest 
descent approximation of the thermal-averaged 
bandshape function works well. Therefore, we con-
sider the Gaussian approximation for the first part, 
i.e. the S = 0 part of the bandshape function. For the 
second term, i.e. I0(z) term, we shall consider short-
time approximation. The exponential term of the in-
tegrand can be considered in the form 
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and 
 
 2 2
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Now for f ′ab(t*) = 0 one obtains 
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Thus the rate can be written as 
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Now, in the I0(z) term of (17), we assume the short-
time limit and set t = t*, the rate, kGL can be given by 
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In the high temperature limit it is assumed that 
cot h( ω0/2kBT) ≈ kBT/ ω0). The rate has a non-trivial 
dependence on S. For S = 0, the rate reduces to the 
Marcus one corresponding to the thermal distribu-
tion. However, when S ≠ 0, the activationless reaction 
condition, i.e. when ω00 + λ = 0 the reaction rate is 
the same as in thermal distribution case. But in the 
normal or inverted regime, i.e. for the case of 
ω00 < λ or, ω00 > λ the rate is affected largely by 

S. In short, S can switch an electron transfer reaction 
from normal to the inverted regime and vice versa. 

 We have considered the G–L state as an initial 
quantum distribution to show the effect on the rate 
of the electron transfer reaction. When the vibrational 
mode of the reactant state is driven by an external 
IR-laser field as well as the vibrational mode is 
damped, a steady state is reached which is the 
Glauber–Lachs state. This steady state appears dur-
ing the damping time of the mode. The electron 
transfer reaction should also start when the G–L 
state is achieved in the reactant mode. So the prepa-
ration of G–L state and electron transfer reaction 
should be really separated in time unless the therma-
lization process is fast enough. However, the time 
scale of thermalization in presence of external laser 
depends on many factors, e.g. strength of the laser 
field, damping rate of the vibrational mode, frequency 
of the mode and temperature of the bath, etc. These 
dependence can be understood from the derivation 
of GL state as a steady state distribution by Fili-
powicz.31 

3. Franck–Condon factor 

Before putting the numerical result in proper per-
spective, in this section we have briefly discussed 
how the quantum effect arises due the nature of in-
teractions in the reactant and product manifolds. The 
quantum effect on the electron transfer rate heavily 
depends on the parameters of the potential surfaces. 
We have considered the effect through the Franck–
Condon overlap integral between the two adiabatic 
surfaces24 for the multimode displaced distorted and 
Duschinsky rotated oscillators in the number state 
representation. 
 When the reactant and product states are oscilla-
tors with Hg

i  and He
i be the Hamiltonian of the reac-

tant and product states of mode i, respectively, 
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xg

i
(e) and pg

i
(e) are the mass weighted co-ordinates and 

momenta, respectively of mode x0
i  is the shift of the 

equilibrium displacement in the product state corre-
sponding to mode i. The co-ordinates of the product 
state oscillators are 
 
 xe = Wxg + x0, (32) 
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where 
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Here R is the Duschinsky rotation matrix corre-
sponding to mixing between the modes. In absence 
of Duschinsky rotation, the matrix W is diagonal and 
the rotation matrix, R is an unit matrix i.e. R = 1. 
The evaluation of FC factor involves the transforma-
tion of co-ordinates from xg to xe along with the con-
jugate momenta pe of the product oscillator. 
 However, for our numerical studies of single and 
factorized two-mode ET process we consider the 
single mode displaced-distorted oscillator FC overlap 
integral, 〈θ gn|θ ek〉 as 
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Here the distortion parameter r = 1/2ln(ωg/ωe)  
and the dimensionless displacement parameter, 

0 / 2 .gz x ω=  In the upper limits of the summa-
tions, n/2 and k/2 are to be taken up to the highest 
integer values for the odd values of n and k. Note 
that the F.C. overlap integral depends on r, x0 and 
also on the explicit value of the one of the frequen-
cies, ωg(e). 

4. Results and discussion 

To explore the quantum effect of the electron trans-
fer rate we have numerically investigated, how the 
rate of electron transfer in a molecular system is in-
fluenced by the temperature, electronic energy gap 

and other parameters of the potential surfaces, like 
displacement z, distortion r. For a two-mode case we 
have studied the effect of a parameter called R 
which is the ratio of vibrational frequencies of the 
reactant state. For the single mode case it can be as-
sumed that the mode physically corresponds to the 
solvent and for the two-mode case the other mode 
can be of molecular origin or corresponding to the 
solvent mode. 
 We have shown the variation of rate, k(T)(in arbi-
trary unit) against energy gap, Δ = ω00 and secondly 
the variation of scaled rate, k(T)/k(0) against tempera-
ture where k(0) is the rate at zero temperature. We 
have considered single mode displaced–distorted os-
cillator system as a model and also a two mode dis-
placed distorted oscillator molecular system to perform 
the following investigations. In all cases we have 
considered a factor of convergence γ = 0⋅5ωg

1 by 
writing the delta function in terms of a Lorenztian in 
the expression of rate with width γ. We have consid-
ered that all quantities have been scaled with respect 
to the vibrational frequency of the first mode of the 
reactant surface, ωg

1 for all cases. Temperature is 
expressed in the units of ωg

1/kB for the single mode 
and two-mode cases. For the two-mode cases unless 
otherwise specified we have taken the modes with 
frequencies ωg

2 = 0⋅5ωg
1. In both the modes we have 

 
 

 
 

Figure 1. For single-mode case, the rate of electron 
transfer, k(T) (in arbitrary unit) is plotted against energy 
gap, Δ. For r = 0, T = 0⋅2 in (a) S = 0 and in (b) S = 2 and 
similarly for r = 0, T = 1 in (c) S = 0 and in (d) S = 2, the 
curves are given with increase in displacement parameter, 
z from 0⋅25 to 2. Like the temperature effect, with in-
crease in S the rate profile broadens. 
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taken displacements, z1 = z2 = z, distortion factors 
r1 = r = r2, average coherent excitations, S1 = S2 = S 
and ground state temperatures, T1 = T2 = T. 
 First, we consider the variation of rate against the 
energy gap, Δ for single mode system. In figure 1(a–d) 
 
 

 
 

Figure 2. For single-mode case, the rate of electron 
transfer, k(T) (in arbitrary unit) is plotted against energy 
gap, Δ. For z = 1, T = 0⋅2 in (a) S = 0 and in (b) S = 2 and 
similarly for z = 1, T = 1 in (c) S = 0 and in (d) S = 2, the 
curves are given with decrease in distortion parameter, r 
from 0⋅1 to –0⋅1. Like the temperature effect, with in-
crease in S the rate profile broadens. 
 
 

 
 

Figure 3. For single-mode case, plots of the scaled rate, 
k(T)/k(0) of electron transfer against reactant state tem-
perature T are provided to show the effect of displace-
ment. We have taken r = 0, Δ = 2⋅5 in (a) S = 0 and in (b) 
S = 2⋅0 and similarly for r = 0, S = 1⋅0 in (c) Δ = 2⋅5 and 
in (d) Δ = –2⋅5. 

we plot the rate against electronic energy gap Δ to 
observe the effect of displacement parameter z at 
two different reactant state temperature T = 0⋅2 and 
T = 1 in units of ωg

1/kB each with two different values 
of S. At each temperature two different S values are 
 
 

 
 

Figure 4. For single-mode case, plots of the scaled rate, 
k(T)/k(0) of electron transfer against reactant state 
temperature T are provided to show the effect of 
distortion. We have taken z = 1, Δ = 2⋅5 in (a) S = 0 and 
in (c) S = 2⋅0 and similarly for z = 1, Δ = –2⋅5 in (b) S = 0 
and in (D) S = 2. 

 

 

 
 

Figure 5. For two-mode case the rate of electron trans-
fer is plotted against Δ to show the variation of z = z1 = z2 
with r1 = r2 = r = 0, T = 0⋅2 at S = 0 in (a) and at S = 1 in 
(b). Similarly in (c) and (d) variation of rate profile  
is shown with distortion at a fixed value of z = z1 = z2 = 1 
and T = T1 = T2 = 0⋅2 in (c) for S = 0 and in (d) for S = 1. 
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chosen, for example, for T = 0⋅2, in (A) S = 0 and in 
(B) S = 2. In figure 1(a–d) we vary z, keeping no 
distortion, i.e. r = 0. It is seen that the maximum in 
the rate appears approximately at –z2 in accordance 
with the high temperature classical rate of Gaussian 
expression. For high temperature case the role of re-
organization energies in the energy-gap law is 
physically clear and the corresponding temperature 
dependence on the rate.24 As z increases, the maximum 
shifts towards the left and the rate also decreases. It 
is well known that with increase in temperature the 
rate profile broadens with Δ. With increase in S also 
we find the rate profile broadens and it broadens more 
than temperature effect. At higher z-value the peak 
passes through a minimum which is typical for a 
Glauber–Lachs distribution case. This corresponds 
to the fact that in the activationless situation the rate 
decreases. 
 Similarly in figure 2(a–d), in each figure we show 
the rate profile with Δ with different values of dis-
tortion factor, r for a fixed value of S and temperature 
T. The effect of r appears through the asymmetry of 
the curves with more signature of vibrational levels 
in the potential surfaces than in case of figure 1(a–d). 
The case corresponding to r = 0 means the frequen-
cies of oscillators in the ground and excited states 
are the same. A systematic variation of r shows broad-
ening of the rate profile with increase in S at a fixed 
temperature. The temperature effect is as usual 
broadening of the rate profile. 
 
 

 
 

Figure 6. For two-mode case the relative rate, k(T)/k(0) 
is plotted against Temperature, T = T1 = T2 to show the 
variation with z = z1 = z2 in (a) with S = 0 and (b) with 
S = 1 and the variation of r = r1 = r2 in (c) S = 0 and (d) 
S = 1, for a fixed value of Δ = 2⋅5. 

 In figures 3 and 4 we have shown the variation of 
scaled rate, k(T)/k(0) against temperature for single 
mode case to analyse the effect of various parameters 
of the potential surfaces. In figure 3, the displace-
ment is varied from z = 0⋅25 to z = 2⋅0 for a fixed 
value of distortion parameter, r = 0. It is seen that as 
the negative value of Δ increases from –2⋅5ωg to 
2⋅5ωg, the rate becomes higher. With increase in S, 
say, from S = 0 (figure 3a), through S = 1⋅0 for fig-
ure 3b to S = 2⋅0 for figure 3c, the rate decreases. If 
we compare figures 3c and d, the trend in temperature 
dependence with the displacement are opposite for 
positive and negative Δ which is apparently follow 
from the rate profile in figure 1. Similarly in figures 
4(a–d) we have shown the dependence of tempera-
ture on the rate with some fixed values of distortion 
parameter, r. Here if we compare figure 4(b) and (c), 
with change in Δ the trend is the opposite. Similar 
effect is observed in figure 4(d). It can be under-
stood qualitatively from figure 2 where it is found 
that the effect of increase in S in negative and posi-
tive Δ are of opposite trend for the different curves 
corresponding to the various values of r. 
 In figure 5 we have shown the rate profiles for 
two-mode system with Δ for some fixed values of 
displacement in figure 5(a–b) and distortion in figure 
5(c–d). For the two-mode case the vibrational level 
 
 

 
 

Figure 7. For two-mode case, in (a) and (b) the rate of 
electron transfer k(T) is plotted against Δ and in (c) and 
(d) the relative rate, k(T)/k(0) is plotted against Tempera-
ture, T = T1 = T2 to show the variation with the ratio of 
frequencies of the two modes in the reactant state, R = ωg

1
/ωg

2 and z = z1 = z2. In the first cases, (a) and (b) with in-
crease in R the rate profile broadens and in the second 
case in (c) and (d), the quantum nature decreases. 
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structures are absent in the rate profile. The dis-
placement and distortion dependence are like single 
mode cases. With increase in S the rate profiles are 
broadened where we have considered S = S1 = S2. For 
the two mode case the rate profiles are more symmet-
ric than the single mode case. 
 In figure 6a–b, we have shown the trend in tem-
perature dependence with the displacement for dif-
ferent S. Here also we consider S = S1 = S2. For both 
figure 6a–b and c–d pairs, with increase in S the 
classical nature of temperature depenedence in-
creases. 
 In figure 7a–b we have shown the plots of rate 
with Δ for two-mode system where the various curves 
in a plot are different by a parameter, R which is the 
ratio of the frequencies of the oscillators of the two 
modes in the reactant state. It is apparent that with 
increase in R the vibrational overlap becomes wider 
or in other words more de-phasing is introduced in 
the system during the transition from the reactant to 
the product states. We find that with increase in S, the 
rate profile is broadened and the height decreases as 
in the single mode case. Similarly, in figure 7c–d, 
the variation of scaled rate, k(T)/k(0) is plotted against 
temperature. Here also we see that with increase in S 
the quantum behaviour of the rate decreases. 

5. Conclusion 

While the quantum theory of electron transfer prob-
lems for single-mode and two-mode cases are studied 
for a long time from the low temperature tunneling 
regime to moderate to high temperature classical re-
gime, the quantum effects are not ex-haustively in-
vestigated with its full complexities of the parameters 
of the system. In most of the cases it is assumed that 
the reactant is in thermal equilibrium. In this context 
we have explicitly calculated the quantum effect due 
to thermo-coherent reactant state distribution instead 
of thermal distribution for single and two mode 
cases and have shown the low and high temperature 
limits and compared with the thermal state case. The 
other quantum effect that can come from the nature 
of the potential surfaces and consequently through 
the Franck–Condon factor where the effect of dis-
placement and distortion are considered in a system-
atic way. 
 Another feature of quantum electron transfer theory 
is about the various interesting other quantum state 
of the reactant surface which may be created by 
some pulsed laser source or by some special property 

of the quantum nature of the solvent. Here we have 
considered a Glauber–Lachs state, which is an inter-
mediate between the coherent and thermal state for 
single mode case. We have provided analytical ex-
pression for the rate with GL state and have shown 
its limiting behaviour in the usual thermal rates at 
low and high temperature regime. GL state can be 
generated if an external Gaussian pulse of light ex-
cites a harmonic oscillator initially in a thermal dis-
tribution. However, a time scale separation is 
necessary between the preparation of thermalized 
steady state distribution of GL state and the conse-
quent electron transfer from GL state in the scheme 
adopted here. It is shown that in the GL state with 
the activationless reaction condition, in presence of 
extra coherent vibrational excitations in addition to 
thermal vibrational excitation at a moderate tem-
perature, the ET rate is not affected. Although the 
quantum effect is predominant in low temperature 
regime for thermal reactant state, in the thermo-
coherent state even at low temperature but with 
higher average coherent excitation the rate behaves 
classically. 
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